Estimating regional CH$_4$ fluxes using GOSAT XCH$_4$ observations.

Annemarie Fraser, Paul I. Palmer, Liang Feng, Hartmut Boesch, Austin J. Cogan, Robert J. Parker, Ed J. Dlugokencky, Paul J. Fraser, Paul B. Krummel, Ray L. Langenfelds, Simon O'Doherty, Ronald G. Prinn, Marcel van der Schoot, L. Paul Steele, and Ray F. Weiss

IWGGMS-9
Yokohama, Japan
May 31, 2013
Data: UoL GOSAT

★ Greenhouse gases Observing SATellite: launched January 23, 2009
★ Data from June 2009 – December 2011
★ OCO Full Physics Optimal Estimation algorithm
★ CO2 retrieval (full physics):
 • simultaneously fits: 0.76 μm O2 A band, the 1.61 μm and the 2.06 μm CO2 bands
★ CH4 retrieval (CH4/CO2 proxy):
 • Fit to CO2 band at 1.61μm and 1.65μm CH4 band
 • \[X_{CH_4, \text{proxy}} = \left(\frac{X_{CH_4}}{X_{CO_2}} \right)_{GOSAT} \times X_{CO_2, \text{model}} \]
 • CO2 model is either CarbonTracker (Peters et al., 2007) or GEOS-Chem (Feng et al, 2011) (Both have assimilated surface data.)
Model: GEOS-Chem

★ GEOS-Chem is a 3D chemical transport model, driven by assimilated meteorological fields (GEOS v5.2)
★ Resolution of 4 lat x 5 lon x 47 vertical levels
★ Emissions from global inventories
 • Anthropogenic: EDGAR 3.2FT
 • Biomass burning: GFEDv3.0
 • Wetlands and rice: Bloom et al., 2012
★ Tropospheric OH sink: monthly mean 3D fields

CH4 surface flask measurements 2009-2010

Palmer and Bloom, 2010
In a Kalman filter, the analysis is given by:

\[x^a = x^f + K \left[y_{obs} - H(x^f) \right] \]

In our case:

\[x^a = x^f + K \left(y_{obs} - H(x^f) \right) \]

New emissions: Prior emissions

GEOS-Chem, averaging kernels

GOSAT data

Kalman Gain (weighting function)
EnKF for methane

★ We assimilate XCH4 proxy GOSAT and ESRL and GASLab surface flask CH4 data (57 sites) filtered for:
 • fit quality
 • clouds
 • only H-gain
 • no observations poleward of 60°
★★ Five inversions: surface only, GOSAT only (x2 proxies), GOSAT and surface data (x2 proxies)
★★ Inversion performed on monthly time intervals, for 13 regions taken from Transcom regions (11 land + ice + oceans)
★★ Land regions are further divided into 9 source categories
★★ Prior errors of 50% for the seasonally varying emissions and 25% for the other emissions
★★ We fit a latitudinally-varying bias

\[\text{ESRL sites} \quad \text{GASLab sites}\]
Effect of GOSAT data

\[\gamma = \left[1 - \frac{\text{error}}{\text{error}_0} \right] \times 100\% \]
CH4 (Tg/year)

γ = \left[1 - \frac{\text{error}}{\text{error}}\right] \times 100\%

GOSATv4 GC+surface

prior surface only

GOSATv3 GC+surface

GOSATv4 GC+surface

Annemarie Fraser - ac.fraser@ed.ac.uk
South Africa

- **AOD filter:**
 - Filter data where ACOS AOD retrieval > 0.15
- **Three month lag:**
 - Allow fluxes to be affected up to three months after the observation
- **Three regions:**
 - Divide South Africa into three regions latitudinally and perform the inversion
- **OSSEs** show that this region can be problematic for the EnKF
Information content metric

$$\eta = \frac{\text{obs}_{cs}}{\text{obs}_p} \div \frac{\sigma_{region}}{\sigma_{total}}$$

St. dev. of flux within region in month
St. dev. of flux over study period

clear-sky obs possibel obs
Comparisons to independent data

Observations
Prior model
Posterior model (GOSATv3 + surface)

Fraser et al., ACP, 2013
Summary

★ We are assimilating GOSAT XCH4 and XCO2 data with GEOS-Chem using an ensemble Kalman filter

★ Error reductions for inversions using the GOSAT data are at least twice the error reductions if only the surface data are assimilated with two exceptions:
 - In Europe, where the surface network describes fluxes on our spatial and temporal grid
 - In boreal regions, due to the satellite's orbit and a data filter

★ Posterior fluxes from GOSATv3 and v4 are consistent, with some differences that need to be further examined

★ We have defined an information content metric, to help identify regions where the inversion has difficulty

★ We see marginal improvement with independent measurements from the AGAGE and TCCON networks